

Preparation work for A Level Physics for 2025 – 2026

Dear prospective A level Physics student,

Welcome to the exciting world of physics, or "the pleasure of finding things out" as physicist Richard Feynman called it. A great journey towards a better understanding of the Universe is about to start in September 2025 at Newstead Wood School. Just like anyone does before any fabulous journey, you need to do some preparation.

You are familiar with many topics you will study in A Level Physics including forces, waves, radioactivity, electricity, and magnetism. We will study them in more detail and find out how they are interconnected during your 2-year learning journey in Physics. You will also learn how to apply mathematics to real-world problems and explore new areas such as particle physics. Perhaps more importantly, you will develop skills that can be transferred to just about any other area of work, from setting up a business to saving the planet. Even if you do not go on to become a physicist, learning to think like one will help you get to the root of any problem and draw connections that are not obvious to others. Physics will not give you all the answers, but it will teach you how to ask the right questions.

We will be following the AQA A-level Physics course

Here are some key documents you may like to refer to:

Specification (sections 2 and 3 will give you a good idea about what is covered on the course) AQA | Physics | A-Level | A-level Physics

Subject specific vocabulary (you should be familiar with this from GCSE) AQA | Subject specific vocabulary

Take some time to take a look at the power points about maths skills in A-level Physics AQA | Maths skills briefings for A-level sciences

Your future with physics: A guide for young people | Institute of Physics (iop.org) There are some student case studies to help you see where A-level Physics can take you.

The following information will help you to understand the course structure and prepare for the course. You need to complete all the tasks prior to your first Physics lesson and bring your work with you. There are some optional tasks at the end if you would like to do those as well.

Contents	Page
Understanding the specification and the assessments	3-6
Transition activities 1-3 Scientific vocabulary	8-10
Transition activity 4 SI units and prefixes	11
Transition activity 5 Converting data	11
Transition activity 6 Practical skills: investigating springs	12-13
Transition activity 7 Using Greek letters	14
Transition activity 8 Using the Physics formula and data sheet	14
Transition activity 9 Using the delta symbol	16
Transition activity 10 Rearranging formulas	17
Transition activity 11 Standard form	18
Transition activity 12 Significant figures and rounding	19
Transition activity 13 Fractions, ratios and percentages	20
Transition activity 14 Pythagoras' theorem	21
Transition activity 15 Using sine, cosine and tangent	22
Transition activity 16 Arithmetic means	22
Transition activity 17 Gradients and areas	23-24
Transition activity 18 Using and interpreting data in tables and graphs	24-31
Optional tasks	32

Aim of the booklet

This booklet will support your transition from GCSE science to A-level. At first, you may find the jump in demand a little daunting, but if you follow the tips and advice in this guide, you'll soon adapt. As you follow the course you will see how the skills and content you learnt at GCSE will be developed and your knowledge and understanding of all these elements will progress.

We have organised the guide into two sections:

- 1. Understanding the specification and the assessments
- 2. Transition activities to bridge the move from GCSE to the start of the A-level course.

Understanding the specification and the assessments

Specification at a glance

The specification is a useful reference document for you. You can download a copy from our website <u>here.</u>

The most relevant areas of the specification for students are the following:

- Section 3: Subject content
- Section 6: Maths requirements and examples
- Section 7: Practical assessment

In Physics the subject content is split between AS and A-level. Sections 3.1–3.5 are common for AS and A-level, sections 3.6–3.8 are A-level only content, and the A- level only options are in sections 3.9–3.13. You will study one of the option choices at A-level, this is usually decided by your teacher depending on resources.

The section titles are listed here.

- 3.1 Measurements and their errors
- 3.2 Particles and radiation
- 3.3 Waves
- 3.4 Mechanics and materials
- 3.5 Electricity
- 3.6 Further mechanics and thermal physics (A-level only)
- 3.7 Fields and their consequences (A-level only)
- 3.8 Nuclear physics (A-level only)
- 3.9 Astrophysics (A-level option)
- 3.10 Medical physics (A-level option)
- 3.11 Engineering physics (A-level option)
- 3.12 Turning points in physics (A-level option)
- 3.13 Electronics (A-level option)

Each section of the content begins with an overview, which describes the broader context and encourages an understanding of the place each section has within the subject. This overview will not be directly assessed.

The specification is presented in a two-column format. The left-hand column contains the specification content that you must cover, and that can be assessed in the written papers.

The right-hand column exemplifies the opportunities for Maths and practical skills to be developed throughout the course. These skills can be assessed through any of the content on the written papers, not necessarily in the topics we have signposted.

Assessment structure

AS

The assessment for the AS consists of two exams, which you will take at the end of the course.

Paper 1	Paper 2
What's assessed	What's assessed
Sections 1–5	Sections 1–5
 How it's assessed Written exam: 1 hour 30 mins 70 marks 50% of the AS 	 How it's assessed Written exam: 1 hour 30 mins 70 marks 50% of the AS
 Questions 70 marks of short and long answer questions split by topic 	 Questions Section A: 20 marks of short and long answer questions on practic skills and data analysis Section B: 20 marks of short and long answer questions from acroall areas of AS content Section C: 30 multiple choice questions

A-level

The assessment for the A-level consists of three exams, which you will take at the end of the course.

Paper 1	Paper 2	Paper 3
 What's assessed Sections 1–5 and 6.1 (Periodic motion) 	 What's assessed Sections 6.2 (Thermal Physics), 7 and 8 Assumed knowledge from sections 1–6.1 	 What's assessed Section A: Compulsory section: Practical skills and data analysis Section B: Students enter for one of sections 9, 10,11,12 or 13
 How it's assessed Written exam: 2 hours 85 marks 34% of the A-level 	 How it's assessed Written exam: 2 hours 85 marks 34% of the A-level 	 How it's assessed Written exam: 2 hours 80 marks 32% of the A-level
 Questions 60 marks of short and long answer questions and 25 multiple choice questions on content. 	 Questions 60 marks of short and long answer questions and 25 multiple choice questions on content. 	 Questions 45 marks of short and long answer questions on practical experiments and data analysis. 35 marks of short and long answer question on optional topic

Assessment objective

As you know from GCSE, we have to write exam questions that address the Assessment objectives (AOs). It is important you understand what these AOs are, so you are well prepared. In Physics there are three AOs.

- AO1: Demonstrate knowledge and understanding of scientific ideas, processes, techniques, and procedures (A-level about 30% of the marks).
- AO2: Apply knowledge and understanding of scientific ideas, processes, techniques, and procedures:
 - in a theoretical context
 - in a practical context
 - when handling qualitative data
 - when handling quantitative data

(A-level about 45% of the marks).

- AO3: Analyse, interpret, and evaluate scientific information, ideas, and evidence, including in relation to:
 - make judgements and reach conclusions
 - develop and refine practical design and procedures

(A-level about 25% of the marks).

Other assessment criteria

At least 40% of the marks for AS and A-level Physics will assess mathematical skills, which will be equivalent to Level 2 (Higher Tier GCSE Mathematics) or above.

At least 15% of the overall assessment of AS and A-level Physics will assess knowledge, skills and understanding in relation to practical work.

Command words

Command words are used in questions to tell you what is required when answering the question. You can find definitions of the command words used in Physics assessments on the <u>website</u>. They are very similar to the command words used at GCSE.

Subject-specific vocabulary

You can find a list of definitions of key working scientifically terms used in our AS and A-level specification <u>here.</u>

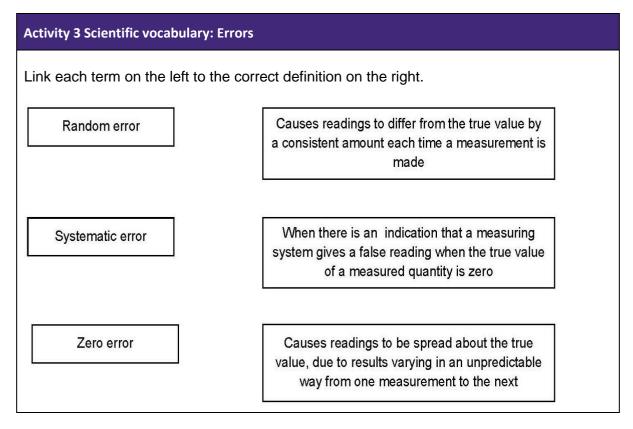
You will become familiar with, and gain understanding of, these terms as you work through the course.

Transition activities

The following activities cover some of the key skills from GCSE science that will be relevant at AS and A-level. They include the vocabulary used when working scientifically and some maths and practical skills.

You can do these activities independently or in class. The booklet has been produced so you can complete it electronically or print it out and do the activities on paper.

The activities are **not a test**. Try the activities first and see what you remember and then use textbooks or other resources to answer the questions. **Don't** just go to Google for the answers, as actively engaging with your notes and resources from GCSE will make this learning experience much more worthwhile.


The answer booklet guides you through each answer. It is not set out like an exam mark scheme but is to help you get the most out of the activities.

Understanding and using scientific vocabulary

Understanding and applying the correct terms are key for practical science. Much of the vocabulary you have used at GCSE for practical work will not change but some terms are dealt with in more detail at A-level so are more complex.

Activity 2 Scientific vocabulary: Making measurements				
Link each term on the left to the correct of	definition on the right.			
True value	The range within which you would expect the true value to lie			
Accurate	A measurement that is close to the true value			
Resolution	Repeated measurements that are very similar to the calculated mean value			
Precise	The value that would be obtained in an ideal measurement where there were no errors of any kind			
Uncertainty	The smallest change that can be measured using the measuring instrument that gives a readable change in the reading			

Understanding and using SI units

All measurements have a size (eg 2.7) and a unit (eg metres or kilograms). Sometimes, there are different units available for the same type of measurement. For example, milligram, gram, kilogram and tonne are all units used for mass. Some values like strain and refractive index are not followed by a unit.

To reduce confusion, and to help with conversion between different units, there is a standard system of units called the SI units which are used for most scientific purposes.

These units have all been defined by experiment so that the size of, say, a metre in the UK is the same as a metre in China.

There are seven SI base units, which are given in the table.

Physical quantity	Unit	Abbreviation
Mass	kilogram	kg
Length	metre	m
Time	second	S
Electric current	ampere	A
Temperature	kelvin	К
Amount of substance	mole	mol
luminous intensity	candela	cd

All other units can be derived from the SI base units. For example, area is measured in metres square (written as m^2) and speed is measured in metres per second (written as m s⁻¹ this is a change from GCSE, where it would be written as m/s).

Some derived units have their own unit names and abbreviations, often when the combination of SI units becomes complicated. Some common derived units are given in the table below.

Physical quantity	Unit	Abbreviation	SI unit
Force	newton	Ν	kg m s⁻²
Energy	joule	J	kg m² s⁻²
Frequency	hertz	Hz	S ⁻¹

Using prefixes and powers of ten

Very large and very small numbers can be complicated to work with if written out in full with their SI unit. For example, measuring the width of a hair or the distance from Manchester to London in metres (the SI unit for length) would give numbers with a lot of zeros before or after the decimal point, which would be difficult to work with.

So, we use prefixes that multiply or divide the numbers by different powers of ten to give numbers that are easier to work with. You will be familiar with the prefixes milli (meaning 1/1000), centi (1/100), and kilo (1×1000) from millimetres, centimetres and kilometres.

There is a wide range of prefixes. Most of the quantities in scientific contexts will be quoted using the prefixes that are multiples of 1000. For example, we would quote a distance of 33 000 m as 33 km.

Kg is the only base unit with a prefix.

The most common prefixes you will encounter are given in the table.

Prefix	Symbol	Power of 10	Multiplication factor	
Tera	Т	10 ¹²	1 000 000 000 000	
Giga	G	10 ⁹	1 000 000 000	
Mega	М	10 ⁶	1 000 000	
kilo	k	10 ³	1000	
deci	d	10 -1	0.1	1/10
centi	с	10 ⁻²	0.01	1/100
milli	m	10 ⁻³	0.001	1/1000
micro	μ	10-6	0.000 001	1/1 000 000
nano	n	10 ⁻⁹	0.000 000 001	1/1 000 000 000
pico	р	10-12	0.000 000 000 001	1/1 000 000 000 000
femto	f	10 ⁻¹⁵	0.000 000 000 000 001	1/1 000 000 000 000 000

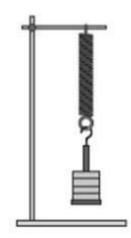
Activity 4 SI units and prefixes

- 1. Re-write the following quantities using the correct SI units.
 - a. 1 minute
 - b. 1 milliamp
 - c. 1 tonne
- 2. What would be the most appropriate unit to use for the following measurements?
 - a. The wavelength of a wave in a ripple tank
 - b. The temperature of a thermistor used in hair straighteners
 - c. The half-life of a source of radiation used as a tracer in medical imaging
 - d. The diameter of an atom
 - e. The mass of a metal block used to determine its specific heat capacity
 - f. The current in a simple circuit using a 1.5 V battery and bulb

Activity 5 Converting data

Re-write the following quantities.

- 1. 1.5 kilometres in metres
- 2. 450 milligrams in kilograms
- 3. 96.7 megahertz in hertz
- 4. 5 nanometers in metres
- 5. 3.9 gigawatts in watts


Practical skills

The practical skills you learnt at GCSE will be further developed through the practicals you undertake at A-level. Your teacher will explain in more detail the requirements for practical work in Physics.

There is a practical handbook for AS and A-level Physics, which has lots of very useful information to support you in developing these important skills. You can download a copy <u>here.</u>

Activity 6 Investigating springs

A group of students investigated how the extension of a spring varied with the force applied. They did this by hanging different weights from the end of the spring and measuring the extension of the spring for each weight.

The results are below.

Weight added to the spring / N	Extension of	spring / cm		
spring / N	Trial 1	Trial 2	Trial 3	Mean
2	3.0	3.1	3.2	
4	6.0	5.9	5.8	
6	9.1	7.9	9.2	
8	12.0	11.9	12.1	
10	15.0	15.1	15.12	

- 1. What do you predict the result of this investigation will be?
- 2. What are the independent, dependent and control variables in this investigation?
- 3. What is the difference between repeatable and reproducible?
- 4. What would be the most likely resolution of the ruler you would use in this investigation?
- 5. Suggest how the student could reduce parallax errors when taking her readings.
- 6. Random errors cause readings to be spread about the true value.

What else has the student done in order to reduce the effect of random errors and make the results more precise?

- 7. Another student tries the experiment but uses a ruler which has worn away at the end by 0.5 cm. What type of error would this lead to in his results?
- 8. Calculate the mean extension for each weight.
- 9. A graph is plotted with force on the *y* axis and extension on the *x* axis. What quantity does the gradient of the graph represent?

Greek letters

Greek letters are used often in science. They can be used:

- as symbols for numbers (such as $\pi = 3.14...$)
- as prefixes for units to make them smaller (eg µm = 0.000 000 001 m)
- as symbols for particular quantities.

The Greek alphabet is shown below.

Capital letter	Lower case letter	Name	Capital letter	Lower case letter	Name	Capital letter	Lower case letter	Na
А	α	alpha	I	I	iota	Ρ	ρ	rho
В	β	beta	к	к	kappa	Σ	ς or σ	sig
Г	Y	gamma	٨	λ	lambda	Т	т	tau
Δ	δ	delta	М	μ	mu	Y	U	up
E	ε	epsilon	N	v	nu	Φ	φ	ph
Z	ζ	zeta	Ξ	ξ	ksi	х	х	chi
Н	η	eta	0	ο	omicron	Ψ	Ψ	ps
Θ	θ	theta	П	π	pi	Ω	ω	on

Activity 7 Using Greek letters

Use your knowledge from GCSE to complete the table. The first line has been completed for you.

Object or quantity represented by the Greek letter	Greek letter
Wavelength	λ
Type of ionising radiation which cannot pass through paper and is used in smoke detectors	
	Ω
Type of ionising radiation which is an electron ejected from the nucleus. Can be used to monitor paper thickness	
Very short wavelength electromagnetic wave	

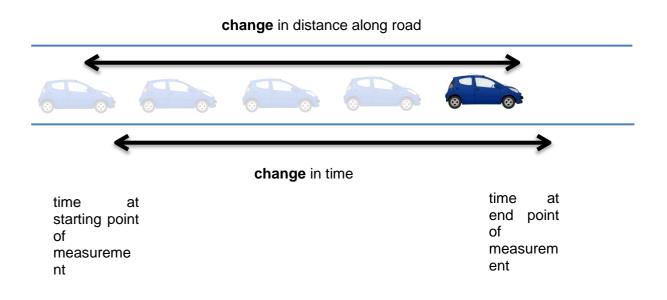
The Physics formula and data sheet

You will need to use the AQA Physics formula and data sheet in your exams.

You can download a copy here.

Activity 8 Using the Physics formula and data sheet

- 1. Use the sheet to find the symbols used to represent the following particles. (You will learn about these particles when you study particle physics.)
 - a. Photon
 - b. Neutrino
 - c. Muon
 - d. Meson (two letters used depending on type of meson)
- 2. Look through the Electricity and Materials formula sections on the data sheet.


There is one Greek letter that is used to represent two different quantities. Give the letter and the quantities is it used to represent.

The delta symbol (Δ)

The delta symbol (Δ) is used to mean 'change in'. For example, at GCSE, you would have learned the formula:

speed =
$$\frac{\text{distance}}{\text{time}}$$
 which can be written as s = $\frac{\text{d}}{\text{t}}$

What you often measure is the **change** in the distance of the car from a particular point, and the **change** in time from the beginning of your measurement to the end of it.

As the distance and the speed are changing, you use the delta symbol to emphasise this. The A-level version of the above formula becomes:

velocity =
$$\frac{\text{displacement}}{\text{time}}$$
 which can be written as $v = \frac{\Delta s}{\Delta t}$

Note: the delta symbol is a property of the quantity it is with, so you treat ' Δ s' as one thing when rearranging, and you cannot cancel the delta symbols in the equation above.

Activity 9 Using the delta symbol

- 1. What is the difference between:
 - a. speed and velocity
 - b. distance and displacement
- 2. Look at the A-level Physics formula sheet (<u>https://filestore.aqa.org.uk/sample-papers-and-mark-schemes/2018/june/AQA-74081-INS-JUN18.PDF</u>).

Which equations look similar to ones you used at GCSE, but now include the delta symbol?

3. A coffee machine heats water from 20 °C to 90 °C.

The power output of the coffee machine is 2.53 kW.

The specific heat capacity of water is 4200 J/kg °C

Calculate the mass of water that the coffee machine can heat in 20 s.

4. An unused pencil has a length of 86.0 mm.

A student uses the pencil to draw 20 lines on a piece of paper.

Each line has a length of 25 cm.

The length of the pencil has changed to 84.5 mm.

Calculate the length of line that would need to be drawn for the original length to be halved.

Rearranging formulas

Activity 10 Rearranging formulas

- 1. Rearrange $c = f \lambda$ to make *f* the subject.
- 2. Rearrange $\rho = \frac{m}{V}$ to make *m* the subject.

3. Rearrange w = $\frac{\lambda D}{s}$ to make s the subject

- 4. Rearrange $P = I^2 R$ to make *I* the subject
- 5. Rearrange $E = \frac{1}{2} m v^2$ to make v the subject.
- 6. Rearrange $h f = \varphi + E_k$ to make φ the subject
- 7. Rearrange v = u + a t to make *a* the subject.
- 8. Rearrange $s = u t + \frac{1}{2} a t^2$ to make *a* the subject.
- 9. Rearrange $\varepsilon = I(R + r)$ to make *r* the subject.
- 10. Rearrange $f = \frac{1}{2l} \sqrt{\frac{T}{\mu}}$ to make *T* the subject.

Using maths skills

Physics uses the language of mathematics to make sense of the world. It is important that you are able to apply maths skills in Physics. The maths skills you learnt and applied at GCSE are used and developed further at A-level.

Activity 11 Standard form

1. Write the following numbers in standard form.

_

a. 379 4 b. 0.0712

- 2. Use the data sheet to write the following as ordinary numbers.
 - a. The speed of light
 - b. The charge on an electron
- 3. Write one quarter of a million in standard form.
- 4. Write these constants in ascending order (ignoring units).

Permeability of free space The Avogadro constant Proton rest mass Acceleration due to gravity Mass of the Sun

Activity 12 Significant figures and rounding

1. A rocket can hold 7 tonnes of material.

Calculate how many rockets would be needed to deliver 30 tonnes of material to a space station.

2. A power station has an output of 3.5 MW.

The coal used had a potential output of 9.8 MW.

Calculate the efficiency of the power station.

Give your answer as a percentage to an appropriate number of significant figures.

3. A radioactive source produces 17 804 beta particles in 1 hour.

Calculate the mean number of beta particles produced in 1 minute.

Give your answer to one significant figure.

Activity 13 Fractions, ratios and percentages

1. The ratio of turns of wire on a transformer is 350 : 7000 (input : output)

What fraction of the turns are on the input side?

2. A bag of electrical components contains resistors, capacitors and diodes.

 $\frac{2}{5}$ of the components are resistors.

The ratio of capacitors to diodes in a bag is 1 : 5. There are 100 components in total.

How many components are diodes?

3. The number of coins in two piles are in the ratio 5 : 3. The coins in the first pile are all 50p coins. The coins in the second pile are all £1 coins.

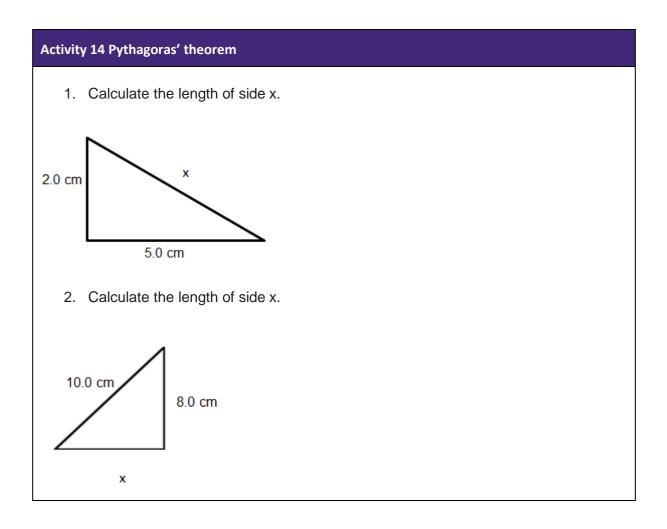
Which pile has the most money?

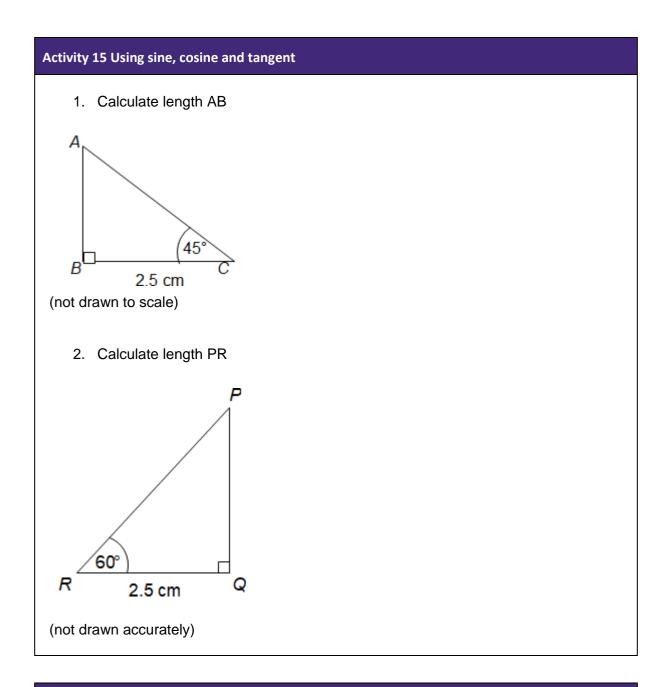
4. A rectangle measures 3.2 cm by 6.8 cm. It is cut into four equal sized smaller rectangles.

Work out the area of a small rectangle.

5. Small cubes of edge length 1 cm are put into a box. The box is a cuboid of length 5 cm, width 4 cm and height 2 cm.

How many cubes are in the box if it is half full?


6. In a circuit there are 600 resistors and 50 capacitors. 1.5% of the resistors are faulty. 2% of the capacitors are faulty.

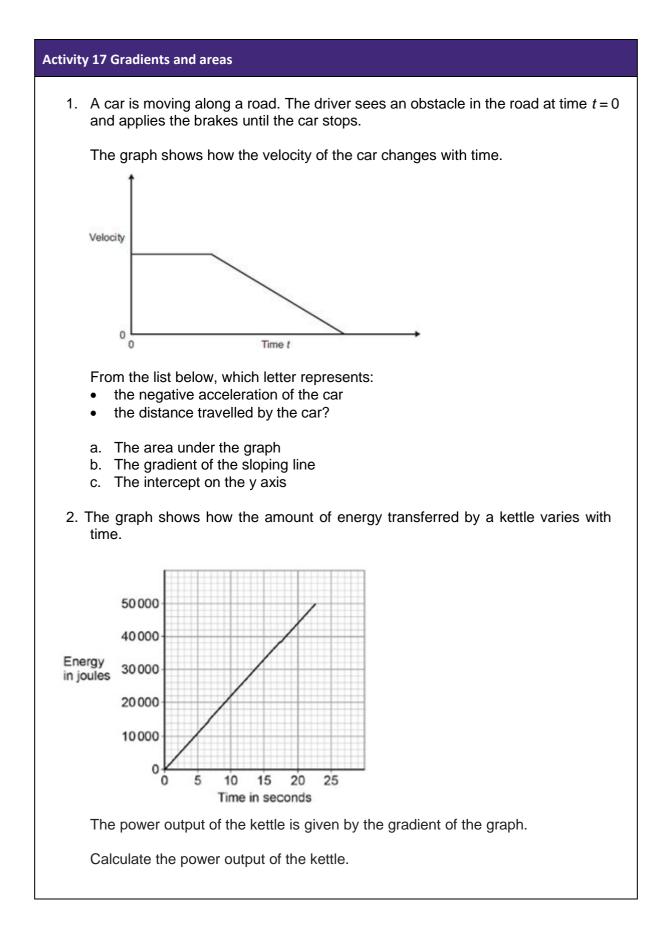

How many faulty components are there altogether?

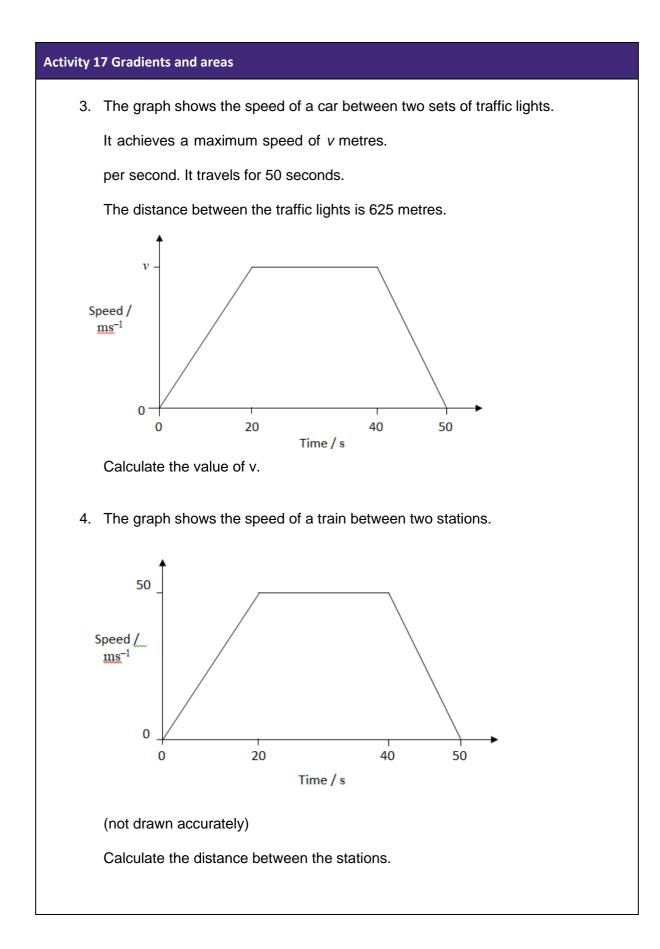
- 7. How far would you have to drill in order to drill down 2% of the radius of the Earth?
- 8. Power station A was online 94% of the 7500 days it worked for.

Power station B was online $\frac{8}{9}$ of the 9720 days it worked for.

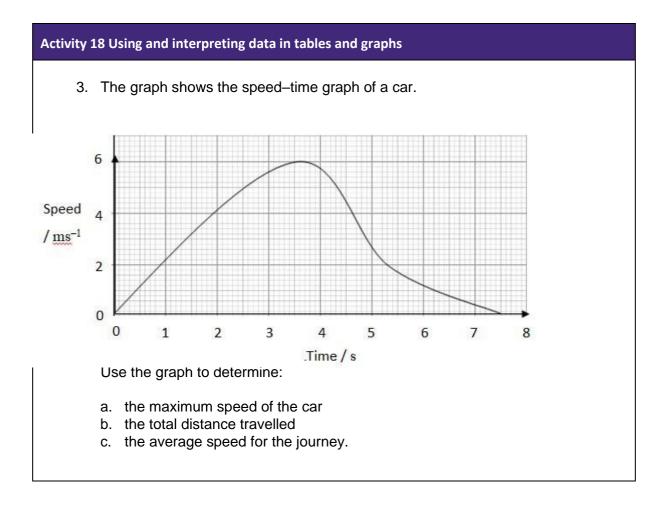
Which power station was offline for longer?

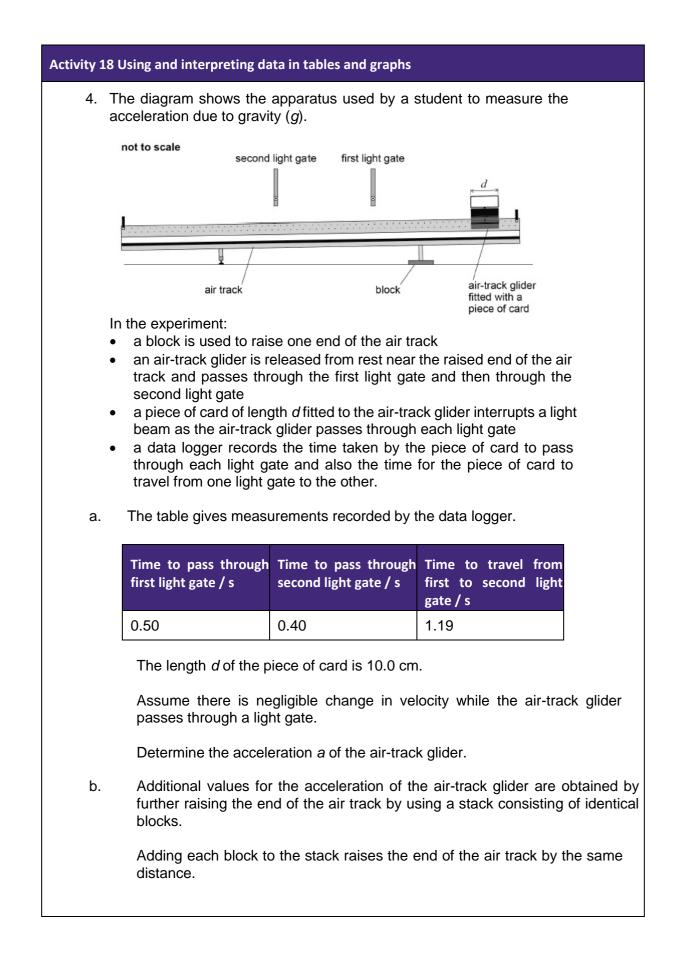
Activity 16 Arithmetic means

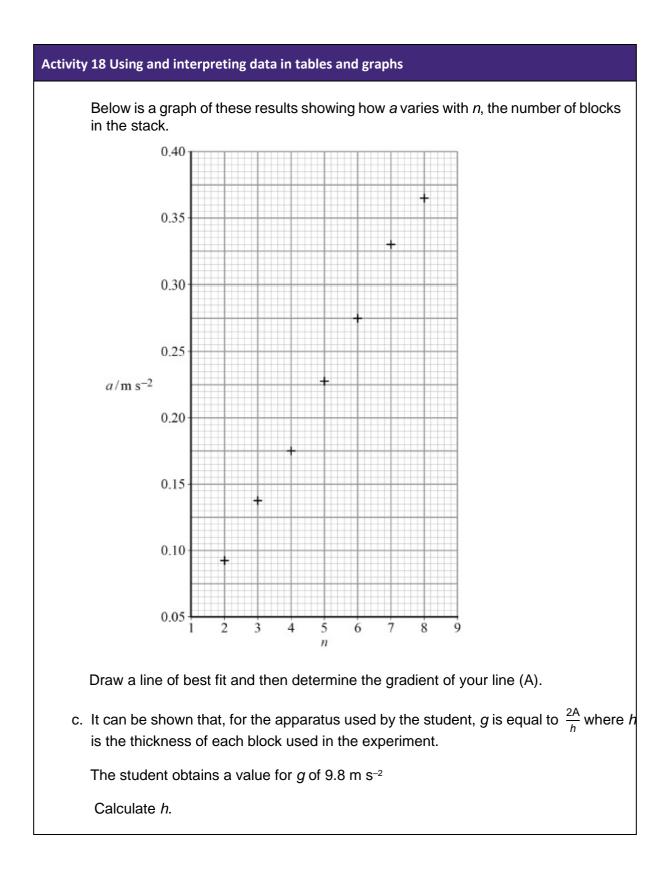

1. The mean mass of 9 people is 79 kg.

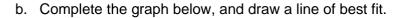

A 10th person is such that the mean mass increases by 1 kg

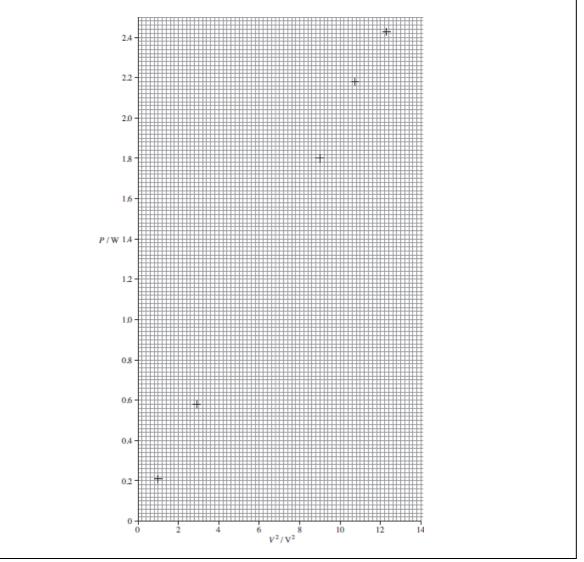

What is the mass of the 10th person?


2. A pendulum completes 12 swings in 150 s.


Calculate the mean swing time.






Activity 18 Using and interpreting data in tables and graphs

5. The power P dissipated in a resistor of resistance R is measured for a range of values of the potential difference V across it. The results are shown in the table.

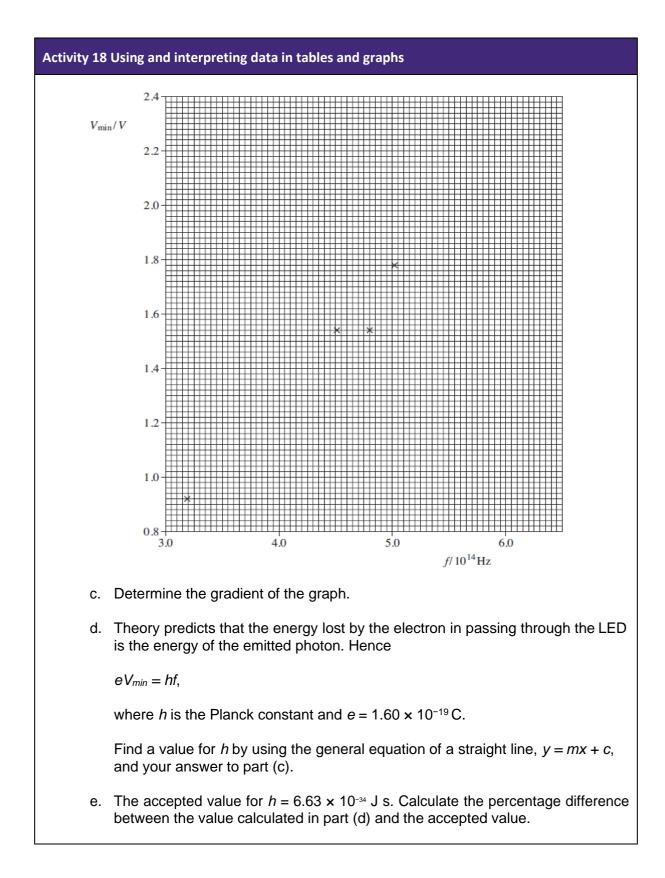
v/v	V ² /V ²	P / W
1.00	1.0	0.21
1.71	2.9	0.58
2.25		1.01
2.67		1.43
3.00	9.0	1.80
3.27	10.7	2.18
3.50	12.3	2.43

a. Complete the table.

Activity 18 Using and interpreting data in tables and graphs

- c. Determine the gradient of the graph.
- d. Use the gradient of the graph to obtain a value for *R*.

The relationship is power = potential difference ²/ resistance


6. To answer these questions, you will need a copy of the <u>A-level</u> <u>Physics formula sheet</u>.

In an experiment, a set of LEDs that emitted light of different colours was used.

The table below shows the data collected.

Colour	Wavelength λ / nm	Frequency f / 10 ¹⁴ Hz	Minimum pd <i>V_{min} / V</i>
Infrared	940	3.19	0.92
Red	665	4.51	1.54
Orange	625	4.80	1.54
Yellow	595	5.04	1.78
Green	565		1.87
Blue	470		2.37

- a. Complete the missing values for frequency.
- b. Complete the graph by plotting the missing two points and drawing a line of best fit.

Optional tasks

1. You may like to get a copy of "Head Start to A-Level Physics" (ISBN: 9781782942818) and **study** three or four pages per week. This will be good preparation for you.

2. <u>Click here</u> to watch a documentary by Big Think, titled "Michio Kaku: The Universe in a Nutshell". Write a text on how it made you feel.

3. Go and explore Physics beyond A level.

4. Here is a short selection of books that should appeal to a physicist, however, please feel free to read any Physics book of your choice.

- *Moondust: In Search of the Men Who Fell to Earth This* book uses the personal accounts of 9 astronauts and many others involved in the space program, looking at the whole space-race era. ISBN: 978-1526611574
- Surely You're Joking Mr. Feynman: Adventures of a Curious Character By reading this book you will get insight into Mr. Feynman's work including the creation of the first atomic bomb and his work in the field of particle physics. ISBN:978-0099173311
- Quantum Theory Cannot Hurt You: Understanding the Mind-Blowing Building Blocks of the Universe Any physics book by Marcus Chown is an excellent insight into some of the more exotic areas of physics that require no prior knowledge. ISBN: 978-0571315024

5. Photograph or video record a physics related event or situation. Explain the physics you see in it/them.

Have a restful and refreshing summer. Feel free to email me if you have any questions. <u>mboyle@newsteadwood.co.uk</u>

Mrs Michelle Boyle (Head of Physics)